王剑编程网

分享专业编程知识与实战技巧

逆向pyinstaller打包的exe软件,获取python源码(1)

2021年的时候写了一个安全事件分析小工具,这是我为安全驻场大头兵写的第一个小工具,基于pyinstaller打包的pe软件,使用的时候非常简单,只需要将态势感知上的安全事件列表导出,导入到小工具中,即可实现自动分析,一方面是帮助安全驻场理解安全事件,另一方面是收集每个现场的安全事件,以便于后续对运营效果进行评估,今年偶然一个机会,发现需要增强对逆向技能的学习,了解到可以对pyinstaller打包的exe软件逆向出python文件,于是想起之前github上有上传过自己写的小工具,于是有了本次的逆向工程~

提醒:故事有后续,逆向出pyinstaller打包的exe软件的所有源代码:ailx10:逆向pyinstaller打包的exe软件,获取python源码(4)

ailx10

网络安全优秀回答者

网络安全硕士

去咨询

小工具说明:

  1. 本工具是没有经过专业测试的v3.0
  2. 帮助解决安全事件分析、处置相关的常见问题,辅助一线快速分析
  3. 使用过程中可能由于安全事件数据字段内容缺失,软件会自动退出
  4. 如果遇到软件退出的问题,请将安全事件发给我,并提供自己的输入信息
  5. 如果你有一些好的想法,也可以给我提建议哦~

优化:

  1. 规则联动,无需用户手动输入
  2. 自适应屏幕分辨率
  3. 自动联网查询Virus Total情报IOC
  4. 优化事件分析逻辑函数,更加友好平滑
  5. 优化部分事件的描述信息,更加准确
  6. 添加数据校验码,验证数据的完整性
  7. VT API是我的个人账号,查询次数受限制,为正常现象

第一步:对exe程序进行反编译[1]

python pyinstxtractor.py 安全事件分析main.exe

第二步:进入新获得的extracted文件夹

第三步:查看struct.pyc和main.pyc前12字节之间的区别

第四步:反编译pyc文件得到python源代码

uncompyle6 安全事件分析main.pyc >  main.py

第五步:欣赏一下反编译的代码

非常遗憾,暂时只能看到主函数,看不到其他函数

# uncompyle6 version 3.9.0
# Python bytecode version base 3.6 (3379)
# Decompiled from: Python 3.6.13 |Anaconda, Inc.| (default, Mar 16 2021, 11:37:27) [MSC v.1916 64 bit (AMD64)]
# Embedded file name: 安全事件分析main.py
"""
@File    : 安全事件分析main.py
@Time    : 2021/8/3 17:53
@Author  : ailx10
@Software: PyCharm
"""
import sys
from datetime import datetime
import hashlib
from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog
from pandas import read_excel
from pandas import DataFrame
from 安全事件说明 import *
from 学习sqllite import create_tables, insert_tables, update_tables_ANALYSIS, update_tables_HELP
from 情报联网 import https_get_ip, https_get_domain, is_ip, is_domain, thead_network_detect, get_network_flag
from 安全事件分析 import Ui_Form

class MyMainForm(QMainWindow, Ui_Form):
    def __init__(self, parent=None):
        super(MyMainForm, self).__init__(parent)
        self.setupUi(self)
        self.data_frame = []
        self.malicious = -999
        self.daily_occurrence = 0
        self.delta_to_now = 0
        self.affected_in_ip_num = 0
        self.threat_scoring = 0
        self.credibility = 0
        self.send_msg_str = ''
        self.openFileButton.clicked.connect(self.openFile)
        self.pushButton_clear.clicked.connect(self.clearInput)
        self.pushButton_analysis.clicked.connect(self.eventAnalysis)
        self.pushButton_help.clicked.connect(self.get_help)
        self.QComboBox_ruleName.currentIndexChanged[int].connect(self.rule_changed)
        self.QComboBox_eventName.currentIndexChanged[int].connect(self.event_change)
        self.QComboBox_evnetMsg.currentIndexChanged[int].connect(self.msg_change)
        self.QComboBox_focus.currentIndexChanged[int].connect(self.focus_change)
        self.QComboBox_srcIP.currentIndexChanged[int].connect(self.srcip_change)
        self.QComboBox_destIP.currentIndexChanged[int].connect(self.destip_change)
        self.QComboBox_lastTime.currentIndexChanged[int].connect(self.last_change)

    def rule_changed(self, rule_idx):
        if len(self.data_frame) > 0:
            self.QComboBox_eventName.clear()
            df = self.data_frame[self.data_frame['规则名称'] == self.QComboBox_ruleName.currentText()]
            events = set(df['事件名称'].tolist())
            for event in events:
                self.QComboBox_eventName.addItem(event)

    def event_change(self, event_idx):
        if len(self.data_frame) > 0:
            self.QComboBox_evnetMsg.clear()
            df = self.data_frame[(self.data_frame['规则名称'] == self.QComboBox_ruleName.currentText()) & (self.data_frame['事件名称'] == self.QComboBox_eventName.currentText())]
            event_msgs = set(df['事件描述'].tolist())
            for event_msg in event_msgs:
                self.QComboBox_evnetMsg.addItem(event_msg)

    def msg_change(self, msg_idx):
        if len(self.data_frame) > 0:
            self.QComboBox_focus.clear()
            df = self.data_frame[(self.data_frame['规则名称'] == self.QComboBox_ruleName.currentText()) & (self.data_frame['事件名称'] == self.QComboBox_eventName.currentText()) & (self.data_frame['事件描述'] == self.QComboBox_evnetMsg.currentText())]
            focus = set(df['关注点'].tolist())
            for focu in focus:
                self.QComboBox_focus.addItem(focu)

    def focus_change(self, focus_idx):
        if len(self.data_frame) > 0:
            self.QComboBox_srcIP.clear()
            df = self.data_frame[(self.data_frame['规则名称'] == self.QComboBox_ruleName.currentText()) & (self.data_frame['事件名称'] == self.QComboBox_eventName.currentText()) & (self.data_frame['事件描述'] == self.QComboBox_evnetMsg.currentText()) & (self.data_frame['关注点'] == self.QComboBox_focus.currentText())]
            src_ips = set(df['源IP'].tolist())
            for src_ip in src_ips:
                self.QComboBox_srcIP.addItem(src_ip)

    def srcip_change(self, srcip_idx):
        if len(self.data_frame) > 0:
            self.QComboBox_destIP.clear()
            df = self.data_frame[(self.data_frame['规则名称'] == self.QComboBox_ruleName.currentText()) & (self.data_frame['事件名称'] == self.QComboBox_eventName.currentText()) & (self.data_frame['关注点'] == self.QComboBox_focus.currentText()) & (self.data_frame['源IP'] == self.QComboBox_srcIP.currentText())]
            dest_ips = set(df['目的IP'].tolist())
            for dest_ip in dest_ips:
                self.QComboBox_destIP.addItem(dest_ip)

    def destip_change(self, destip_idx):
        if len(self.data_frame) > 0:
            self.QComboBox_lastTime.clear()
            df = self.data_frame[(self.data_frame['规则名称'] == self.QComboBox_ruleName.currentText()) & (self.data_frame['事件名称'] == self.QComboBox_eventName.currentText()) & (self.data_frame['关注点'] == self.QComboBox_focus.currentText()) & (self.data_frame['源IP'] == self.QComboBox_srcIP.currentText()) & (self.data_frame['目的IP'] == self.QComboBox_destIP.currentText())]
            last_times = set(df['最近发生时间'].tolist())
            for last_time in last_times:
                if isinstance(last_time, datetime):
                    self.QComboBox_lastTime.addItem(last_time.strftime('%Y-%m-%d %H:%M:%S'))
                elif isinstance(last_time, str):
                    self.QComboBox_lastTime.addItem(last_time)
                else:
                    self.textBrowser_.setText('【最近发生时间】字段里面存在非时间类型的字符')
                    break

    def last_change(self, last_idx):
        pass

    def base_analysis(self, df):
        self.textBrowser_.insertPlainText('------------基本分析:-----------\n')
        ruleName = df.loc[(0, '规则名称')]
        eventMsg = df.loc[(0, '事件描述')]
        credibility = df.loc[(0, '确信度')]
        ioc = df.loc[(0, '情报IOC')]
        self.credibility = get_credibility(credibility)
        info = get_rule_info(ruleName)
        self.textBrowser_.insertPlainText(info + '\n')
        endtime = df.loc[(0, '最近发生时间')]
        startime = df.loc[(0, '首次发生时间')]
        eventnums = df.loc[(0, '聚合次数')]
        end = datetime.strptime(str(endtime), '%Y-%m-%d %H:%M:%S')
        start = datetime.strptime(str(startime), '%Y-%m-%d %H:%M:%S')
        intervalday = (end - start).days + 1
        today = datetime.now()
        self.daily_occurrence = round(eventnums / intervalday, 2)
        self.delta_to_now = (today - end).days
        df_src = self.data_frame[(self.data_frame['关注点'] == '源') & (self.data_frame['事件描述'] == eventMsg)]
        df_dest = self.data_frame[(self.data_frame['关注点'] == '目的') & (self.data_frame['事件描述'] == eventMsg)]
        src_ips = [i[0] for i in list(df_src.groupby('源IP'))]
        dest_ips = [i[0] for i in list(df_dest.groupby('目的IP'))]
        cross_ips = set(src_ips) | set(dest_ips)
        self.affected_in_ip_num = len(cross_ips)
        try:
            if ruleName in ('恶意主机外联', '恶意域名事件'):
                print('测试联网:{}'.format(get_network_flag()))
                if get_network_flag():
                    print('联网成功,正在检测IOC...')
                    if is_ip(ioc):
                        self.malicious = https_get_ip(ioc, 1)
                else:
                    if is_domain(ioc):
                        self.malicious = https_get_domain(ioc, 1)
                    print(self.malicious)
        except:
            pass

    def false_positives_analysis(self, df):
        self.textBrowser_.insertPlainText('\n------------误报分析:------------\n')
        if self.credibility < 0:
            self.textBrowser_.insertPlainText('事件本身是低可疑的,误报可能性高,可信度扣0.5分\n')
            self.threat_scoring -= 0.5
        if self.delta_to_now >= 7:
            self.textBrowser_.insertPlainText('一周内从未发生过,误报可能性高,可信度扣0.5分\n')
            self.threat_scoring -= 0.5
        if self.daily_occurrence <= 1:
            self.textBrowser_.insertPlainText('平均日发生次数:' + str(self.daily_occurrence) + ' 疑似误报,可信度扣1分\n')
            self.threat_scoring -= 1
        if self.affected_in_ip_num > 99:
            self.textBrowser_.insertPlainText('事件影响主机数:' + str(self.affected_in_ip_num) + ' 疑似误报,可信度扣1分\n')
            self.threat_scoring -= 1
        else:
            if self.affected_in_ip_num > 49:
                self.textBrowser_.insertPlainText('事件影响主机数:' + str(self.affected_in_ip_num) + ' 疑似误报,可信度扣0.5分\n')
                self.threat_scoring -= 0.5
        if self.malicious < 0:
            if self.malicious > -999:
                self.textBrowser_.insertPlainText('VT情报命中为正常:' + str(self.malicious) + ' 疑似误报,可信度扣0.5分\n')
                self.threat_scoring -= 0.5
        if self.malicious == 0:
            self.textBrowser_.insertPlainText('VT情报命中为正常:' + str(self.malicious) + ' 疑似误报,可信度扣0.2分\n')
            self.threat_scoring -= 0.2

    def poisoning_analysis(self, df):
        self.textBrowser_.insertPlainText('\n------------确认分析:------------\n')
        if self.credibility == 0.5:
            self.textBrowser_.insertPlainText('事件本身是高可疑的,基本可信,可信度加0.5分\n')
            self.threat_scoring += 0.5
        else:
            if self.credibility == 1:
                self.textBrowser_.insertPlainText('事件本身是已失陷的,基本可信,可信度加1分\n')
                self.threat_scoring += 1
        if self.delta_to_now < 3:
            self.textBrowser_.insertPlainText('3天内发生过,基本可信,可信度加0.5分\n')
            self.threat_scoring += 0.5
        else:
            if self.delta_to_now < 7:
                self.textBrowser_.insertPlainText('7天内发生过,但是3天内没再发生,基本可信,可信度加0.2分\n')
                self.threat_scoring += 0.2
        if self.daily_occurrence >= 3:
            self.textBrowser_.insertPlainText('平均日发生次数:' + str(self.daily_occurrence) + ' 基本可信,可信度加1分\n')
            self.threat_scoring += 1
        else:
            if (self.daily_occurrence > 1) & (self.daily_occurrence < 3):
                self.textBrowser_.insertPlainText('平均日发生次数:' + str(self.daily_occurrence) + ' 基本可信,可信度加0.5分\n')
                self.threat_scoring += 0.5
        if self.affected_in_ip_num <= 49:
            self.textBrowser_.insertPlainText('事件影响主机数:' + str(self.affected_in_ip_num) + ' 基本可信,可信度加0.5分\n')
            self.threat_scoring += 0.5
        if self.malicious > 0:
            self.textBrowser_.insertPlainText('VT情报命中为恶意:' + str(self.malicious) + ' 基本可信,可信度加0.5分\n')
            self.threat_scoring += 0.5

    def conclusion_analysis(self, df):
        self.textBrowser_.insertPlainText('\n------------结论:------------\n')
        self.textBrowser_.insertPlainText('综合打分:' + str(self.threat_scoring) + '\n')
        if self.threat_scoring >= 1:
            self.textBrowser_.insertPlainText('事件基本可信')
        else:
            if self.threat_scoring >= 0:
                self.textBrowser_.insertPlainText('事件可信度不高,但好像不是误报,需要再看看')
            else:
                self.textBrowser_.insertPlainText('事件好像是误报')
        self.threat_scoring = 0

    def disposal_advice(self):
        pass

    def eventAnalysis(self):
        ruleName = self.QComboBox_ruleName.currentText()
        eventName = self.QComboBox_eventName.currentText()
        eventMsg = self.QComboBox_evnetMsg.currentText()
        focus = self.QComboBox_focus.currentText()
        srcIP = self.QComboBox_srcIP.currentText()
        destIP = self.QComboBox_destIP.currentText()
        lastTime = self.QComboBox_lastTime.currentText()
        self.textBrowser_.clear()
        self.textBrowser_.insertPlainText('------------您输入的安全事件基本信息:------------\n规则名称:' + ruleName + '\n事件名称:' + eventName + '\n事件描述:' + eventMsg + '\n关注点:' + focus + '\n源IP:' + srcIP + '\n目的IP:' + destIP + '\n最近发生时间:' + lastTime + '\n\n')
        if len(self.data_frame) >= 1:
            df = self.data_frame.loc[(self.data_frame['规则名称'] == ruleName) & (self.data_frame['事件名称'] == eventName) & (self.data_frame['事件描述'] == eventMsg) & (self.data_frame['关注点'] == focus) & (self.data_frame['源IP'] == srcIP) & (self.data_frame['目的IP'] == destIP)]
            if len(df) > 1:
                if len(lastTime) > 1:
                    df = self.data_frame.loc[(self.data_frame['规则名称'] == ruleName) & (self.data_frame['事件名称'] == eventName) & (self.data_frame['事件描述'] == eventMsg) & (self.data_frame['关注点'] == focus) & (self.data_frame['源IP'] == srcIP) & (self.data_frame['目的IP'] == destIP) & (self.data_frame['最近发生时间'] == lastTime)]
        else:
            self.textBrowser_.setText('请输入最近发生时间,确保选中唯一事件')
        df = df.reset_index(drop=True)
        if len(df) == 1:
            self.base_analysis(df)
            self.false_positives_analysis(df)
            self.poisoning_analysis(df)
            self.conclusion_analysis(df)
            try:
                update_tables_ANALYSIS()
            except:
                pass

        else:
            if len(df) == 0:
                self.textBrowser_.insertPlainText('输入错误:未找到安全事件\n')
            elif len(df) > 1:
                self.textBrowser_.insertPlainText('输入告警:存在重复安全事件\n')
                self.base_analysis(df.ix[0])
                self.false_positives_analysis(df.ix[0])
                self.poisoning_analysis(df.ix[0])
                self.conclusion_analysis(df.ix[0])
                try:
                    update_tables_ANALYSIS()
                except:
                    pass

            else:
                self.textBrowser_.setText('先按照要求导入安全事件\n')

    def get_time_to_stamp(self, x):
        return datetime.timestamp(datetime.strptime(str(x), '%Y-%m-%d %H:%M:%S'))

    def event_collect(self, df):
        g_df = df.groupby(["'事件描述'", "'事件名称'", "'规则名称'", "'关注点'", "'确信度'", "'攻击阶段'"])
        g_df = g_df['聚合次数'].sum().reset_index(name='聚合总次数')
        c_df = DataFrame(g_df)
        c_df.sort_values(by=['聚合总次数'], ascending=False, inplace=True)
        c_df.to_csv('事件详情.csv', index=False, header=True)
        df_temp = df.copy(deep=True)
        df_temp['最近发生时间'] = df_temp['最近发生时间'].apply((lambda x: self.get_time_to_stamp(x)))
        max_stamp = df_temp['最近发生时间'].max()
        recent_7day = max_stamp - 604800
        df_event_7 = df_temp[((df_temp['规则名称'] == '恶意主机外联') | (df_temp['规则名称'] == '恶意域名事件')) & (df_temp['最近发生时间'] > recent_7day)]
        df_event_7.to_csv('情报事件.csv', index=False, header=True)

    def openFile(self):
        thead_network_detect(has_proxy=0)
        self.textBrowser_.clear()
        get_filename_path, ok = QFileDialog.getOpenFileName(self, '选取单个文件', 'C:/', 'All Files (*);;Text Files (*.txt)')
        if ok:
            self.filePathlineEdit.setText(str(get_filename_path))
            if 'xls' in get_filename_path:
                self.data_frame = read_excel(get_filename_path)
                self.data_frame = self.data_frame.fillna('')
                self.textBrowser_.insertPlainText('导入数据成功:安全事件为 ' + get_filename_path + '\n表格中一共有' + str(len(self.data_frame)) + '条安全事件\n')
                core_field = [
                 "'事件描述'", "'事件名称'", "'规则名称'", 
                 "'确信度'", "'攻击阶段'", "'关注点'", "'源IP'", "'目的IP'", 
                 "'聚合次数'", "'情报IOC'", "'首次发生时间'", "'最近发生时间'", 
                 "'处理状态'"]
                miss_field = list(set(core_field).difference(set(self.data_frame.columns.values)))
                if len(miss_field) > 0:
                    self.textBrowser_.insertPlainText('【错误】安全事件缺少关键字段:【{}】,请在态势感知上添加列定制后重新下载,重新导入'.format(' 】【'.join(miss_field)))
                else:
                    self.QComboBox_ruleName.clear()
                    df_event_status_ed = self.data_frame[self.data_frame['处理状态'] == '已处理']
                    df_event_status_ing = self.data_frame[self.data_frame['处理状态'] == '处理中']
                    df_event_status_ignore = self.data_frame[self.data_frame['处理状态'] == '忽略']
                    df_event_status_ed_fall_2 = self.data_frame[(self.data_frame['确信度'] == '已失陷') & (self.data_frame['处理状态'] == '已处理')]
                    self.textBrowser_.insertPlainText('----------总的处理现状:----------\n已处理事件数:{}\t 忽略事件数:{}\t 处理中事件数:{}\t 已处理&已失陷事件数:{}\n'.format(len(df_event_status_ed), len(df_event_status_ignore), len(df_event_status_ing), len(df_event_status_ed_fall_2)))
                    df_event_fall_2 = self.data_frame[(self.data_frame['确信度'] == '已失陷') & (self.data_frame['处理状态'] == '未处理')]
                    df_event_fall_1 = self.data_frame[(self.data_frame['确信度'] == '高可疑') & (self.data_frame['处理状态'] == '未处理')]
                    df_event_fall_0 = self.data_frame[(self.data_frame['确信度'] == '低可疑') & (self.data_frame['处理状态'] == '未处理')]
                    self.textBrowser_.insertPlainText('总的残余风险:\n未处置事件数:{}\t已失陷事件数:{}\t高可疑事件数:{}\t低可疑事件数:{}\n'.format(len(df_event_fall_2) + len(df_event_fall_1) + len(df_event_fall_0), len(df_event_fall_2), len(df_event_fall_1), len(df_event_fall_0)))
                    df_temp = self.data_frame.copy(deep=True)
                    df_temp['最近发生时间'] = df_temp['最近发生时间'].apply((lambda x: self.get_time_to_stamp(x)))
                    max_stamp = df_temp['最近发生时间'].max()
                    recent_7day = max_stamp - 604800
                    df_event_status_ed_7 = df_temp[(df_temp['处理状态'] == '已处理') & (df_temp['最近发生时间'] <= max_stamp) & (df_temp['最近发生时间'] > recent_7day)]
                    df_event_status_ing_7 = df_temp[(df_temp['处理状态'] == '处理中') & (df_temp['最近发生时间'] <= max_stamp) & (df_temp['最近发生时间'] > recent_7day)]
                    df_event_status_ignore_7 = df_temp[(df_temp['处理状态'] == '忽略') & (df_temp['最近发生时间'] <= max_stamp) & (df_temp['最近发生时间'] > recent_7day)]
                    df_event_status_ed_fall_2_7 = df_temp[(df_temp['确信度'] == '已失陷') & (df_temp['处理状态'] == '已处理') & (df_temp['最近发生时间'] <= max_stamp) & (df_temp['最近发生时间'] > recent_7day)]
                    self.textBrowser_.insertPlainText('----------最近7天处理现状:----------\n已处理事件数:{}\t 忽略事件数:{}\t 处理中事件数:{}\t 已处理&已失陷事件数:{}\n'.format(len(df_event_status_ed_7), len(df_event_status_ignore_7), len(df_event_status_ing_7), len(df_event_status_ed_fall_2_7)))
                    df_event_fall_2_7 = df_temp[(df_temp['确信度'] == '已失陷') & (df_temp['处理状态'] == '未处理') & (df_temp['最近发生时间'] <= max_stamp) & (df_temp['最近发生时间'] > recent_7day)]
                    df_event_fall_1_7 = df_temp[(df_temp['确信度'] == '高可疑') & (df_temp['处理状态'] == '未处理') & (df_temp['最近发生时间'] <= max_stamp) & (df_temp['最近发生时间'] > recent_7day)]
                    df_event_fall_0_7 = df_temp[(df_temp['确信度'] == '低可疑') & (df_temp['处理状态'] == '未处理') & (df_temp['最近发生时间'] <= max_stamp) & (df_temp['最近发生时间'] > recent_7day)]
                    self.textBrowser_.insertPlainText('最近7天残余风险:\n未处置事件数:{}\t已失陷事件数:{}\t高可疑事件数:{}\t低可疑事件数:{}\n'.format(len(df_event_fall_2_7) + len(df_event_fall_1_7) + len(df_event_fall_0_7), len(df_event_fall_2_7), len(df_event_fall_1_7), len(df_event_fall_0_7)))
                    recall_level_df = df_temp[(df_temp['最近发生时间'] <= max_stamp) & (df_temp['最近发生时间'] > recent_7day)]
                    recall_level = len(set(recall_level_df['事件名称'].tolist()))
                    precision = len(df_event_status_ed_fall_2_7)
                    false_alarm = len(df_event_status_ignore_7)
                    residual_risks = len(df_event_fall_2_7) * 10 + len(df_event_fall_1_7) + len(df_event_fall_0_7) * 0.2
                    del df_temp
                    self.send_msg_str = self.textBrowser_.toPlainText()
                    try:
                        create_tables(self.textBrowser_)
                        data = str(['recall_level', 'precision', 'false_alarm', 'residual_risks', 
                         '1993'])
                        check_code = hashlib.md5(data.encode(encoding='UTF-8')).hexdigest()
                        insert_tables(get_filename_path, check_code, recall_level, precision, false_alarm, residual_risks)
                    except:
                        print('db采集出bug了')
                        self.textBrowser_.insertPlainText('db采集出bug了\n')

                    try:
                        self.event_collect(self.data_frame)
                    except:
                        print('采集事件有bug')
                        self.textBrowser_.insertPlainText('采集事件有bug')

                    rules = set(self.data_frame['规则名称'].tolist())
                    for rule in rules:
                        self.QComboBox_ruleName.addItem(rule)

            else:
                self.textBrowser_.setText('导入数据错误:请选择安全事件(excel文件)\n')
        else:
            self.textBrowser_.setText('导入数据错误:你单击的是文件夹,要选择excel文件\n')

    def clearInput(self):
        self.QComboBox_eventName.clear()
        self.QComboBox_evnetMsg.clear()
        self.QComboBox_focus.clear()
        self.QComboBox_srcIP.clear()
        self.QComboBox_destIP.clear()
        self.QComboBox_lastTime.clear()
        self.textBrowser_.clear()

    def get_help(self):
        self.textBrowser_.clear()
        self.textBrowser_.setText('小工具说明:\n1.本工具是没有经过专业测试的v3.0\n2.帮助解决安全事件分析、处置相关的常见问题,辅助一线快速分析\n3.使用过程中可能由于安全事件数据字段内容缺失,软件会自动退出\n4.如果遇到软件退出的问题,请将安全事件发给我,并提供自己的输入信息...\n')
        try:
            update_tables_HELP()
        except:
            pass


if __name__ == '__main__':
    app = QApplication(sys.argv)
    myWin = MyMainForm()
    myWin.show()
    sys.exit(app.exec_())
# okay decompiling 安全事件分析main.pyc

参考

  1. ^pyinstxtractor https://github.com/extremecoders-re/pyinstxtractor

发布于 2023-01-13 21:39IP 属地江苏

控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言